Spontaneous Magnetization of the Ising Model on a Layered Square Lattice

K. Y. Lin ${ }^{1}$ and S. K. Ma ${ }^{1}$

Received October 14, 1987; revision received January 28, 1988

Abstract

We have studied the Ising model on a layered square lattice with four different coupling constants and two different magnetic moments. The partition function at zero magnetic field is derived exactly. We propose a formula for the spontaneous magnetization which agrees with the exact low-temperature series expansion up to the 16th order and reduces to the exact result of Au-Yang and McCoy in a special case.

KEY WORDS: Ising model; spontaneous magnetization; layered square lattice; series expansion.

1. INTRODUCTION

The spontaneous magnetization of the Ising model on a rectangular lattice was first announced by Onsager in 1948, although he never published his derivation. Yang ${ }^{(1)}$ was the first to publish a derivation of the spontaneous magnetization on a square lattice, and his result was generalized to a rectangular lattice by Chang. ${ }^{(2)}$ In 1960, Syozi and Naya ${ }^{(3)}$ made a conjecture for the spontaneous magnetization on a generalized square lattice (also called checkerboard lattice). Their conjecture was confirmed recently. ${ }^{(4-6)}$

In 1974, Au-Yang and McCoy ${ }^{(7)}$ calculated exactly the spontaneous magnetization on a layered square lattice with three different coupling constants $\left(J_{1}, J_{2}, J_{2}^{\prime}\right)$ and the same magnetic moment for all spins. In their model the coupling constant along any horizontal bond is J_{1}, and the coupling constant along a vertical bond between the j th row and the $(j+1)$ th row is $J_{2}\left(J_{2}^{\prime}\right)$ if j is even (odd). Their derivation is very complicated. The spontaneous magnetization is obtained as the limiting value of an infinite block Toeplitz determinant. The purpose of the present paper

[^0]is to generalize their result to a layered square lattice with four different coupling constants and two different magnetic moments. Unfortunately, mathematical theorems are not available for a general block Toeplitz determinant and we are unable to derive the spontaneous magnetization via block Toeplitz determinant. In this paper we propose a formula for the spontaneous magnetization which agrees with the low-temperature series expansion up to the 16 th order.

2. THE LAYERED ISING MODEL

Consider the layered Ising model of N spins on a square lattice with four coupling constants ($J_{1}, J_{2}, J_{1}^{\prime}, J_{2}^{\prime}$) and two magnetic moments (m, m^{\prime}) as shown in Fig. 1. Each spin located on the even (odd) rows carries a magnetic moment m (m^{\prime}). The coupling constant along horizontal bonds on even (odd) rows is $J_{1}\left(J_{1}^{\prime}\right)$. When $J_{1}=J_{1}^{\prime}$ and $m=m^{\prime}$, our model reduces to the case of Au-Yang and McCoy.

The partition function at zero magnetic field is

$$
\begin{equation*}
Z=\sum_{\sigma= \pm 1} \prod_{\mathrm{nn}} \exp \left(K_{i j} \sigma_{i} \sigma_{j}\right) \tag{1}
\end{equation*}
$$

Fig. 1. A layered square lattice.
where $K=J / k T, J$ is the coupling constant, σ_{i} denotes the spin state at lattice site i, and nn means nearest neighbor interaction. The partition function can be derived by the standard method of Pfaffian and dimer city. ${ }^{(8,9)}$ Each vertex is replaced by a dimer city. A unit cell of the dimer lattice (see Fig. 2) corresponds to an eighth-order matrix G with elements

$$
\begin{equation*}
g(i, j)=-g^{*}(j, i) \tag{2}
\end{equation*}
$$

The sign of each element is identified by an arrow such that its pointing from site i to site j implies $\operatorname{sgn}(i, j)=+1$. The matrix elements associated with positive signs are shown explicitly in Fig. 2, except those whose values are unity. We have

$$
\begin{align*}
N^{-1} \log Z= & \log 2+\frac{1}{2} \log \left(\cosh K_{1} \cosh K_{2} \cosh K_{1}^{\prime} \cosh K_{2}^{\prime}\right) \\
& +\left(16 \pi^{2}\right)^{-1} \iint_{0}^{2 \pi} \log \Delta(\theta, \phi) d \theta d \phi \tag{3}
\end{align*}
$$

Fig. 2. A unit cell of the dimer lattice.
where $\Delta=\operatorname{det} G$ is the determinant of the 8×8 matrix G :

$$
G \xlongequal{ }\left|\begin{array}{cccccccc}
0 & -1-y_{1}^{\prime} e^{-i \theta} & 1 & -1 & 0 & 0 & 0 & 0 \\
1+y_{1}^{\prime} e^{i \theta} & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 & 0 & 0 & y_{2}^{\prime} e^{i \phi} \\
1 & 1 & -1 & 0 & 0 & 0 & -y_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & -1-y_{1} e^{-i \theta} & 1 & -1 \\
0 & 0 & 0 & 0 & 1+y_{1} e^{i \theta} & 0 & -1 & -1 \\
0 & 0 & 0 & y_{2} & -1 & 1 & 0 & 1 \\
0 & 0 & -y_{2}^{\prime} e^{-i \phi} & 0 & 1 & 1 & -1 & 0
\end{array}\right|
$$

After a straightforward calculation, we find

$$
\begin{equation*}
\Delta=a+b \cos \theta+c \cos \phi-d \sin ^{2} \theta \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& a=A^{2}+B^{2}+C^{2}+D^{2} \\
& b=2(A B+C D), \quad c=2(A C+B D) \\
& d=4 y_{1} y_{1}^{\prime}\left(1-y_{2}^{2}\right)\left(1-y_{2}^{\prime 2}\right), \quad y_{i}=\tanh K_{i} \\
& A=-\left(1+y_{1} y_{1}^{\prime}\right), \quad B=y_{1}+y_{1}^{\prime} \\
& C=y_{2} y_{2}^{\prime}\left(1+y_{1} y_{1}^{\prime}\right), \quad D=y_{2} y_{2}^{\prime}\left(y_{1}+y_{1}^{\prime}\right)
\end{aligned}
$$

The critical temperature T_{c} is determined by $A+B+C+D=0$.

3. SPONTANEOUS MAGNETIZATION

In the special case of $J_{1}=J_{1}^{\prime}$ and $m=m^{\prime}=1$, the spontaneous magnetization M_{0} is derived by Au-Yang and McCoy. ${ }^{(7)}$ After a long and difficult calculation, they obtain a remarkably simple result (for $T \leqslant T_{c}$):

$$
\begin{align*}
M_{0}^{8}= & \left(1-c_{1}^{2}\right)\left(1-c_{2}^{2}\right)\left(1-c_{3}^{2}\right)\left(1-c_{4}^{2}\right)\left(1-z z^{\prime}\right)^{4} \\
& \times\left[\left(1-c_{1} c_{2}\right)\left(1-c_{3} c_{4}\right)\left(1-z^{2}\right)\left(1-z^{\prime 2}\right)\right]^{-2} \tag{5}
\end{align*}
$$

where

$$
z=\exp \left(-2 J_{2} / k T\right), \quad z^{\prime}=\exp \left(-2 J_{2}^{\prime} / k T\right)
$$

and $c_{j}=\exp \left(i \theta_{j}\right)$ are the roots of

$$
\begin{equation*}
P_{ \pm}\left(e^{i \theta}\right)=a \pm c+b \cos \theta-d \sin ^{2} \theta \tag{6}
\end{equation*}
$$

such that $P_{+}\left(c_{1}\right)=P_{+}\left(c_{2}\right)=P_{-}\left(c_{3}\right)=P_{-}\left(c_{4}\right)=0, c_{j} \leqslant 1$.

In the general case, we have calculated the exact low-temperature series expansion ${ }^{(10)}$ for the spontaneous magnetization up to the 16th order.

There are two spontaneous magnetizations associated with the two types of sites. These magnetizations are denoted by $\left\langle\sigma_{\text {even }}\right\rangle$ and $\left\langle\sigma_{\text {odd }}\right\rangle$, where $\sigma_{\text {even }}\left(\sigma_{\text {odd }}\right)$ is the spin on an even (odd) row. We have

$$
\begin{equation*}
\left\langle\sigma_{\text {even }}\right\rangle=M\left(x, x^{\prime}, z, z^{\prime}\right), \quad\left\langle\sigma_{\text {odd }}\right\rangle=M\left(x^{\prime}, x, z^{\prime}, z\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{gather*}
x=\exp \left(-2 J_{1} / k T\right), \quad x^{\prime}=\exp \left(-2 J_{1}^{\prime} / k T\right) \\
M\left(x, x^{\prime}, z, z^{\prime}\right)=1+\sum_{r=2}^{\infty} M_{2 r} \tag{8}
\end{gather*}
$$

and

$$
\begin{aligned}
M_{4}= & -2 x^{2} z z^{\prime} \\
M_{6}= & -4\left(x z z^{\prime}\right)^{2}-2\left(x x^{\prime}\right)^{2}\left(z^{2}+z^{\prime 2}\right) \\
M_{8}= & -6 x^{2}\left(z z^{\prime}\right)^{3}+4\left(x x^{\prime} z z^{\prime}\right)^{2}+6 x^{4}\left(z z^{\prime}\right)^{2} \\
& -4\left(x x^{\prime}\right)^{2}\left(z^{4}+z^{\prime 4}\right)-2\left(x x^{\prime}\right)^{2}\left(2 x^{2}+x^{\prime 2}\right) z z^{\prime} \\
& -12\left(x x^{\prime}\right)^{2} z z^{\prime}\left(z^{2}+z^{\prime 2}\right) \\
M_{10}= & -4\left(x x^{\prime}\right)^{4}\left(z^{2}+z^{\prime 2}\right)-8 x^{2}\left(z z^{\prime}\right)^{4}-6\left(x x^{\prime}\right)^{2}\left(z^{6}+z^{\prime 6}\right) \\
& +4 x^{4} x^{\prime 2} z z^{\prime}\left(z^{2}+z^{\prime 2}\right)-32\left(x x^{\prime} z z^{\prime}\right)^{2}\left(z^{2}+z^{\prime 2}\right) \\
& -20\left(x x^{\prime}\right)^{2} z z^{\prime}\left(z^{4}+z^{\prime 4}\right)+24 x^{2}\left(x^{2}+x^{\prime 2}\right)\left(z z^{\prime}\right)^{3} \\
& -48 x^{4}\left(x^{\prime} z z^{\prime}\right)^{2}-28 x^{\prime 4}\left(x z z^{\prime}\right)^{2} \\
M_{12}= & -22\left(x x^{\prime}\right)^{4}\left(z^{4}+z^{\prime 4}\right)-8\left(x x^{\prime}\right)^{2}\left(z^{8}+z^{\prime 8}\right)+60\left(x z z^{\prime}\right)^{4} \\
& -\left(x x^{\prime}\right)^{4}\left(6 x^{2}+4 x^{\prime 2}\right) z z^{\prime}-10 x^{2}\left(z z^{\prime}\right)^{5}-20\left(x^{2} z z^{\prime}\right)^{3} \\
& -88\left(x x^{\prime}\right)^{4} z z^{\prime}\left(z^{2}+z^{\prime 2}\right)-28\left(x x^{\prime}\right)^{2} z z^{\prime}\left(z^{6}+z^{\prime 6}\right) \\
& +8 x^{4} x^{\prime 2}\left(z^{4}+z^{\prime 4}\right) z z^{\prime}+12\left(x x^{\prime}\right)^{2}\left(3 x^{4}+x^{\prime 4}\right)\left(z z^{\prime}\right)^{2} \\
& +16\left(x x^{\prime}\right)^{4}\left(z z^{\prime}\right)^{2}+32 x^{4}\left(x^{\prime} z z^{\prime}\right)^{2}\left(z^{2}+z^{\prime 2}\right) \\
& -48\left(x x^{\prime} z z^{\prime}\right)^{2}\left(z^{4}+z^{\prime 4}\right)-60\left(x x^{\prime}\right)^{2}\left(z z^{\prime}\right)^{3}\left(z^{2}+z^{\prime 2}\right) \\
& -276 x^{4} x^{\prime 2}\left(z z^{\prime}\right)^{3}-166 x^{2} x^{\prime 4}\left(z z^{\prime}\right)^{3}+72\left(x x^{\prime}\right)^{2}\left(z z^{\prime}\right)^{4}
\end{aligned}
$$

$$
\begin{aligned}
& M_{14}=-10\left(x x^{\prime}\right)^{2}\left(z^{10}+z^{\prime 10}\right)-68\left(x x^{\prime}\right)^{4}\left(z^{6}+z^{\prime 6}\right)-12 x^{2}\left(z z^{\prime}\right)^{6} \\
& -6\left(x x^{\prime}\right)^{6}\left(z^{2}+z^{\prime 2}\right)+120\left(x z z^{\prime}\right)^{4}\left(z z^{\prime}-x^{2}\right) \\
& -36\left(x x^{\prime}\right)^{2} z z^{\prime}\left(z^{8}+z^{\prime 8}\right)-336\left(x x^{\prime}\right)^{4} z z^{\prime}\left(z^{4}+z^{\prime 4}\right) \\
& +4\left(x x^{\prime}\right)^{4}\left(4 x^{2}+x^{\prime 2}\right) z z^{\prime}\left(z^{2}+z^{\prime 2}\right)-64\left(x x^{\prime} z z^{\prime}\right)^{2}\left(z^{6}+z^{\prime 6}\right) \\
& +12 x^{4} x^{\prime 2} z z^{\prime}\left(z^{6}+z^{\prime 6}\right)-\left(x x^{\prime}\right)^{4}\left(196 x^{2}+144 x^{\prime 2}\right)\left(z z^{\prime}\right)^{2} \\
& -12 x^{6}\left(x^{\prime} z z^{\prime}\right)^{2}\left(z^{2}+z^{\prime 2}\right)+56 x^{4}\left(x^{\prime} z z^{\prime}\right)^{2}\left(z^{4}+z^{\prime 4}\right) \\
& -768\left(x x^{\prime}\right)^{4}\left(z z^{\prime}\right)^{2}\left(z^{2}+z^{\prime 2}\right)+288\left(x x^{\prime}\right)^{4}\left(z z^{\prime}\right)^{3} \\
& +176 x^{2} x^{\prime 6}\left(z z^{\prime}\right)^{3}-632 x^{2}\left(x^{\prime} z z^{\prime}\right)^{4}+136\left(x x^{\prime}\right)^{2}\left(z z^{\prime}\right)^{5} \\
& -96\left(x x^{\prime}\right)^{2}\left(z z^{\prime}\right)^{4}\left(z^{2}+z^{\prime 2}\right)-72\left(x x^{\prime}\right)^{2}\left(z z^{\prime}\right)^{3}\left(z^{4}+z^{\prime 4}\right) \\
& +480 x^{6} x^{\prime 2}\left(z z^{\prime}\right)^{3}-1056 x^{\prime 2}\left(x z z^{\prime}\right)^{4} \\
& +124 x^{4} x^{\prime 2}\left(z z^{\prime}\right)^{3}\left(z^{2}+z^{\prime 2}\right) \\
& M_{16}=-12\left(x x^{\prime}\right)^{2}\left(z^{12}+z^{\prime 12}\right)-156\left(x x^{\prime}\right)^{4}\left(z^{8}+z^{\prime 8}\right)-14 x^{2}\left(z z^{\prime}\right)^{7} \\
& -68\left(x x^{\prime}\right)^{6}\left(z^{4}+z^{\prime 4}\right)-\left(x x^{\prime}\right)^{6}\left(8 x^{2}+6 x^{\prime 2}\right) z z^{\prime}+210 x^{4}\left(z z^{\prime}\right)^{6} \\
& -420 x^{6}\left(z z^{\prime}\right)^{5}+70\left(x^{2} z z^{\prime}\right)^{4}-44\left(x x^{\prime}\right)^{2} z z^{\prime}\left(z^{10}+z^{\prime 10}\right) \\
& -864\left(x x^{\prime}\right)^{4} z z^{\prime}\left(z^{6}+z^{\prime 6}\right)-292\left(x x^{\prime}\right)^{6} z z^{\prime}\left(z^{2}+z^{\prime 2}\right) \\
& +16\left(x x^{\prime}\right)^{2}\left(x^{2}-5 z z^{\prime}\right) z z^{\prime}\left(z^{8}+z^{\prime 8}\right)+44\left(x x^{\prime}\right)^{6}\left(z z^{\prime}\right)^{2} \\
& +\left(x x^{\prime}\right)^{4}\left(60 x^{2}+8 x^{\prime 2}\right) z z^{\prime}\left(z^{4}+z^{\prime 4}\right)+12 x^{2} x^{\prime 6} z z^{\prime}\left(z^{6}+z^{\prime 6}\right) \\
& +54\left(x x^{\prime}\right)^{4}\left(2 x^{4}+x^{\prime 4}\right)\left(z z^{\prime}\right)^{2}+80 x^{4}\left(x^{\prime} z z^{\prime}\right)^{2}\left(z^{6}+z^{\prime 6}\right) \\
& -2300\left(x x^{\prime}\right)^{4}\left(z z^{\prime}\right)^{2}\left(z^{4}+z^{\prime 4}\right)-24 x^{6}\left(x^{\prime} z z^{\prime}\right)^{2}\left(z^{4}+z^{\prime 4}\right) \\
& +\left(x x^{\prime}\right)^{4}\left(336 x^{2}+80 x^{\prime 2}\right)\left(z z^{\prime}\right)^{2}\left(z^{2}+z^{\prime 2}\right)+544\left(x x^{\prime} z z^{\prime}\right)^{4} \\
& +\left(x x^{\prime}\right)^{2}\left(3104 x^{4}+1272 x^{\prime 4}\right)\left(z z^{\prime}\right)^{4}+152 x^{\prime 6}\left(x z z^{\prime}\right)^{2}\left(z^{4}+z^{\prime 4}\right) \\
& -x^{2}\left(64 x^{\prime 8}+2060 x^{2} x^{\prime 6}+2694 x^{4} x^{\prime 4}+240 x^{6} x^{\prime 2}\right)\left(z z^{\prime}\right)^{3} \\
& -\left(x x^{\prime}\right)^{2}\left(1834 x^{\prime 2}+3100 x^{2}\right)\left(z z^{\prime}\right)^{5}+300\left(x x^{\prime}\right)^{2}\left(z z^{\prime}\right)^{6} \\
& -140\left(x x^{\prime}\right)^{2}\left(z z^{\prime}\right)^{5}\left(z^{2}+z^{\prime 2}\right)-128\left(x x^{\prime}\right)^{2}\left(z z^{\prime}\right)^{4}\left(z^{4}+z^{\prime 4}\right) \\
& -336 x^{\prime 2}\left(x z z^{\prime}\right)^{4}\left(z^{2}+z^{\prime 2}\right)+200 x^{4} x^{\prime 2}\left(z z^{\prime}\right)^{3}\left(z^{4}+z^{\prime 4}\right) \\
& +\left(732 x^{2} x^{\prime 6}-3968 x^{4} x^{\prime 4}-120 x^{6} x^{\prime 2}\right)\left(z z^{\prime}\right)^{3}\left(z^{2}+z^{\prime 2}\right) \\
& -108\left(x x^{\prime}\right)^{2}\left(z z^{\prime}\right)^{3}\left(z^{6}+z^{\prime 6}\right)
\end{aligned}
$$

We now propose a formula for M :

$$
\begin{equation*}
M\left(x, x^{\prime}, z, z^{\prime}\right)=M_{0} F\left(x, x^{\prime}, z, z^{\prime}\right) \tag{9}
\end{equation*}
$$

where M_{0} is defined by (5) and

$$
F^{4}=N\left(x, x^{\prime}, z, z^{\prime}\right) / N\left(x^{\prime}, x, z, z^{\prime}\right)
$$

with

$$
\begin{aligned}
N\left(x, x^{\prime}, z, z^{\prime}\right)= & {\left[\left(1-x^{2} x^{\prime 2}\right)\left(1-z z^{\prime}\right)\right]^{4} } \\
& +4 x^{\prime 2}\left(1-x^{2} x^{\prime 2}\right)^{3} z z^{\prime}\left(1-z z^{\prime}\right)^{2} \\
& +\left(1-x^{2} x^{\prime 2}\right)\left[4\left(1-x^{2}\right) x x^{\prime} z z^{\prime}\right]^{2} \\
& -2\left[4\left(1-x^{2}\right)\left(1-x^{\prime 2}\right) x x^{\prime} z z^{\prime}\right]^{2}
\end{aligned}
$$

It can be shown that

$$
\begin{align*}
c_{j} & =\left[\alpha_{+} \pm\left(\alpha_{+}^{2}-d\right)^{1 / 2}\right]\left[\beta_{+}-\left(\beta_{+}^{2}-d\right)^{1 / 2}\right] / d, & & j=1,2 \tag{10}\\
& =\left[\alpha_{-}-\left(\alpha_{-}^{2}-d\right)^{1 / 2}\right]\left[\beta_{-} \pm\left(\beta_{-}^{2}-d\right)^{1 / 2}\right] / d, & & j=3,4
\end{align*}
$$

where the upper (lower) signs correspond to $j=1$ or 3 (2 or 4), and

$$
\alpha_{ \pm}=-(A \pm C), \quad \beta_{ \pm}=B \pm D
$$

It follows from expression (10) that

$$
\begin{align*}
& 0 \leqslant c_{j}<1 \quad j>1 \\
& 0 \leqslant c_{1}<1 \quad \text { if } A+B+C+D>0 \quad\left(T_{c}>T\right) \\
& c_{1}>1 \quad \text { if } \quad A+B+C+D<0 \quad\left(T_{c}<T\right) \\
& \prod_{j}\left(1-c_{j}^{2}\right)= 16 c_{1} c_{2} c_{3} c_{4} \\
& \times d^{-2}(A+B+C+D)(B+C-A-D) \\
& \times(B+D-A-C)(C+D-A-B) \tag{11}
\end{align*}
$$

After a straightforward calculation, we get

$$
\begin{equation*}
M_{0}^{8}=N\left(1-z z^{\prime}\right)^{4} / D\left[\left(1-z^{2}\right)\left(1-z^{\prime 2}\right)\right]^{2} \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
N= & {\left[\left(1-x^{2} x^{\prime 2}\right)\left(1-z^{2}\right)\left(1-z^{\prime 2}\right)\right]^{2}-\left[4 x x^{\prime}\left(z+z^{\prime}\right)\left(1+z z^{\prime}\right)\right]^{2} } \\
D= & \left(1-x^{2} x^{\prime 2}\right)\left(1-z z^{\prime}\right)^{4} \\
& +8 z z^{\prime}\left(1-z z^{\prime}\right)^{2}\left[\left(1+x^{2} x^{\prime 2}\right)\left(x^{2}+x^{\prime 2}\right)-4 x^{2} x^{\prime 2}\right] \\
& +\left[4 z z^{\prime}\left(x^{2}-x^{\prime 2}\right)\right]^{2}
\end{aligned}
$$

Our conjecture (9) agrees with the exact series expansion (8) up to the 16th order. Notice that

$$
\begin{equation*}
M\left(x, x^{\prime}, z, z^{\prime}\right)=M\left(x, x^{\prime}, z^{\prime}, z\right) \tag{13}
\end{equation*}
$$

which is an exact consequence of the up-down reflection symmetry.

4. EXACTLY SOLUBLE CASES

Case 1. $J_{1}=J_{1}^{\prime}$. In this case we have $x=x^{\prime}$. It follows from (13) that

$$
\begin{equation*}
\left\langle\sigma_{\mathrm{even}}\right\rangle=\left\langle\sigma_{\text {odd }}\right\rangle=M\left(x, x^{\prime}, z, z^{\prime}\right) \tag{14}
\end{equation*}
$$

Since $F=1$ and $M=M_{0}$, our conjecture agrees with the exact result of Au-Yang and McCoy.

Case 2. $J_{1}=0$ or $J_{1}^{\prime}=0$, When $J_{1}^{\prime}=0$, we have $x^{\prime}=1$ and

$$
\begin{equation*}
F^{4}=1+4 z z^{\prime} /\left(1-z z^{\prime}\right)^{2} \tag{15}
\end{equation*}
$$

In this case the layered lattice reduces to a decorated square lattice and can be solved exactly. ${ }^{(11)}$ Our formula (15) agrees with the exact result.

Case 3. J_{1} or $J_{1}^{\prime}=\infty$. When $J_{1}^{\prime}=\infty$ (i.e., $x^{\prime}=0$) we have

$$
F\left(x, 0, z, z^{\prime}\right)=\left[1+4 x^{2} z z^{\prime} /\left(1-z z^{\prime}\right)^{2}\right]^{-1 / 4}
$$

and

$$
\begin{align*}
& \left\langle\sigma_{\text {odd }}\right\rangle=1 \\
& \left\langle\sigma_{\text {even }}\right\rangle=\left[1+4 x^{2} z z^{\prime} /\left(1-z z^{\prime}\right)^{2}\right]^{-1 / 2} \tag{16}
\end{align*}
$$

In this case, our model reduces to a one-dimensional system and the magnetization can be derived exactly for arbitrary magnetic field $H,{ }^{(12)}$

$$
\begin{align*}
\left\langle\sigma_{\text {odd }}\right\rangle & =1 \\
\left\langle\sigma_{\text {even }}\right\rangle & =\sinh K\left(\sinh ^{2} K+x^{2}\right)^{-1 / 2} \tag{17}
\end{align*}
$$

where $K \pm\left(H+J_{2}+J_{2}^{\prime}\right) / k T$. The exact expression (17) reduces to (16) at $H=0$.

Case 4. J_{2} or $J_{2}^{\prime}=\infty$. When $J_{2}^{\prime}=\infty$ (i.e., $z^{\prime}=0$), we have $F=1$ and

$$
\begin{equation*}
\left\langle\sigma_{\text {even }}\right\rangle=\left\langle\sigma_{\text {odd }}\right\rangle=\left(1-k^{2}\right)^{-1 / 8} \tag{18}
\end{equation*}
$$

where $k=4 x x^{\prime} z /\left(1-x^{2} x^{\prime 2}\right)\left(1-z^{2}\right)$. In this case the layered lattice reduces to a rectangular lattice and (18) is exact.

In addition to above soluble cases, it is possible to sum up exactly all terms in the series expansion to fourth in z and z^{\prime}, but to all orders in x and x^{\prime}. Our conjecture agrees with such exact results.

4. CONCLUSION

We have proposed a formula for the spontaneous magnetization of the Ising model on a layered square lattice with four different coupling constants and two different magnetic moments. This model includes the layered Ising model of Au-Yang and McCoy as a special case. Our conjecture is supported by the following evidence: (1) The spontaneous magnetization drops to zero at the exact critical temperature. (2) Our expression agrees with the exact low-temperature series expansion up to the 16th order. (3) Our result is exact in several special cases.

ACKNOWLEDGMENTS

One of us (K.Y.L.) thanks Dr. H. Au-Yang and Prof. J. Perk for an interesting discussion. This work was supported by the National Science Council of Taiwan.

REFERENCES

1. C. N. Yang, Phys. Rev. 85:808 (1952).
2. C. H. Chang, Phys. Rev. 88:1422 (1952).
3. I. Syozi and S. Naya, Prog. Theor. Phys. 23:374 (1960).
4. K. Y. Lin and J. M. Fang, Phys. Lett. A 109:121 (1985).
5. K. Y. Lin, J. Stat. Phys. 49:269 (1987).
6. R. J. Baxter, Proc. Soc. Lond. A 404:1 (1986).
7. H. Au-Yang and B. McCoy, Phys. Rev. B 10:3885 (1974).
8. C. A. Hurst and H. S. Green, J. Chem. Phys. 33:1059 (1960).
9. P. W. Kasteleyn, J. Math. Phys. 4:287 (1963).
10. C. Domb, Adv. Phys. 9:149 (1960).
11. I. Syozi, in Phase Transitions and Critical Phenomena, Vol. 1, C. Domb and M. S. Green, eds. (Academic Press, London, 1972).
12. R. K. Pathria, Statistical Mechanics (Pergamon Press, New York, 1972), p. 418.

[^0]: ${ }^{1}$ Physics Department, National Tsing Hua University, Hsinchu, Taiwan 30043.

