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Spontaneous Magnetization of the Ising 
Model on a Layered Square Lattice 
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We have studied the Ising model on a layered square lattice with four different 
coupling constants and two different magnetic moments. The partition function 
at zero magnetic field is derived exactly. We propose a formula for the spon- 
taneous magnetization which agrees with the exact low-temperature series 
expansion up to the 16th order and reduces to the exact result of Au-Yang and 
McCoy in a special case. 
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1. I N T R O D U C T I O N  

The spontaneous magnetization of the Ising model on a rectangular lattice 
was first announced by Onsager in 1948, although he never published his 
derivation. Yang ~1) was the first to publish a derivation of the spontaneous 
magnetization on a square lattice, and his result was generalized to a rec- 
tangular lattice by Chang. ~2) In 1960, Syozi and Naya ~3) made a conjecture 
for the spontaneous magnetization on a generalized square lattice (also 
called checkerboard lattice). Their conjecture was confirmed recently/4-6) 

In 1974, Au-Yang and McCoy ~7) calculated exactly the spontaneous 
magnetization on a layered square lattice with three different coupling con- 
stants (J~, J2, J~) and the same magnetic moment for all spins. In their 
model the coupling constant along any horizontal bond is J1, and the 
coupling constant along a vertical bond between the j th  row and the 
( j +  1)th row is J2 (J~) i f j  is even (odd). Their derivation is very com- 
plicated. The spontaneous magnetization is obtained as the limiting value 
of an infinite block Toeplitz determinant. The purpose of the present paper 
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is to generalize their result to a layered square lattice with four different 
coupling constants and two different magnetic moments. Unfortunately, 
mathematical theorems are not available for a general block Toeplitz deter- 
minant and we are unable to derive the spontaneous magnetization via 
block Toeplitz determinant. In this paper we propose a formula for the 
spontaneous magnetization which agrees with the low-temperature series 
expansion up to the 16th order. 

2. THE LAYERED ISING M O D E L  

Consider the layered Ising model of N spins on a square lattice with 
four coupling constants (J1, J2, J'l, J~) and two magnetic moments (m, m') 
as shown in Fig. 1. Each spin located on the even (odd) rows carries a 
magnetic moment m (m'). The coupling constant along horizontal bonds 
on even (odd) rows is J1 (J]). When J1 = J~ and m = m', our model reduces 
to the case of Au-Yang and McCoy. 

The partition function at zero magnetic field is 

Z =  ~ l~exp(K~a,a j )  (1) 
cr +1 nn 

m '  ~ '  

m 

Fig. 1. A layered square lattice. 
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where K =  J/kT, J is the coupling constant, a i denotes the spin state at 
lattice site i, and nn means nearest neighbor interaction. The partition 
function can be derived by the standard method of Pfaffian and dimer 
city. (8'9) Each vertex is replaced by a dimer city. A unit cell of the dimer 
lattice (see Fig. 2) corresponds to an eighth-order matrix G with elements 

g( i, j) = -g* ( j ,  i) (2) 

The sign of each element is identified by an arrow such that its pointing 
from site i to site j implies sgn(i, j ) =  + 1. The matrix elements associated 
with positive signs are shown explicitly in Fig. 2, except those whose values 
are unity. We have 

1 
N -1 log Z =  log 2 + ~ log(cosh K I cosh K2 cosh K'I cosh K~) 

f f0 ~'~ + (16n:) ' log A(0, ~) dO d~ (3) 

> ~ '  > Y, 'e~ 

Fig. 2. A unit cell of the dimer lattice. 
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where  A = de t  G is the  d e t e r m i n a n t  of  the  8 • 8 m a t r i x  G :  

G= 
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0 - - l - - y ] e  -i~ 1 --1 0 0 0 0 

l + y'le i~ 0 --1 --1 0 0 0 0 

- 1  1 0 1 0 0 0 y'2e i~ 

! 1 - -  I 0 0 0 - -Y2  0 

0 0 0 0 0 1 - - y l e  -i~ 1 - 1  

0 0 0 0 l + y l e  i~ 0 --1 - 1  

0 0 0 Y2 -- 1 1 0 1 

0 0 --y'2e ~ 0 1 1 -- 1 0 

After  a s t r a i g h t f o r w a r d  ca l cu l a t i on ,  we f ind 

A = a + b cos  0 + c cos  ~b - d sin 2 0 

a = A 2  + B2 + C2 + D 2 

b=2(AB+CD) ,  c = 2 ( A C + B D )  

d =  4y l  y'a(1 - y22)(1 - y f ) ,  y~ = t a n h  K~ 

A =  - ( 1  + y~ y'~), B=y~+y'~ 

C= yxy'2(l + y~y'~), D= y2y'2(y~ + y'l) 

where  

The  c r i t i ca l  t e m p e r a t u r e  Tc is d e t e r m i n e d  b y  A + B + C + D = 0. 

(4) 

z '  = exp(  - 2J'2/kT) 

P + (e g~ = a _+ c + b cos  0 - d sin20 

such  t ha t  P+(cl) = P+(e2) = P _  (c3) = P _ ( c 4 )  = 0, cj<~ 1. 

(6) 

whe re  

z = exp(  - 2J2/kT), 

a n d  c j =  exp( i0 f l  a re  the  r o o t s  of  

3. SPONTANEOUS MAGNETIZATION 

In  the  spec ia l  case  of  J x = J ' l  a n d  m = m ' =  1, the  s p o n t a n e o u s  
m a g n e t i z a t i o n  Mo is d e r i v e d  by  A u - Y a n g  a n d  M c C o y .  (7) Af te r  a l ong  a n d  
diff icult  c a l cu l a t i on ,  t hey  o b t a i n  a r e m a r k a b l y  s imple  resu l t  ( for  T~< Tc): 

Mo s = (1 - c~)(1 - c~)(1 - c32)(1 - c])(1 - z z ' )  4 

x [(1 - q c2)(1 - c3 c4)(1 - -  Z 2 ) ( 1  - - ,7 '2) ]  -2  (5) 



Ising Model  on a Layered Square Lattice 495 

In the general case, we have calculated the exact low-temperature  
series expansion (m) for the spontaneous  magnet izat ion up to the 16th 

order. 
There are two spontaneous  magnet izat ions associated with the two 

types of  sites. These magnet izat ions are denoted by <~ . . . .  > and <aod~>, 
where a . . . .  (~odd) is the spin on an even (odd)  row. We have 

where 

and 

<~ . . . .  > = M ( x , x ' , z , z ' ) ,  < a o ~ d > = M ( x ' , x , z ' , z )  (7) 

x = exp( - 2J1 /kT) ,  x'  = exp( - 2J ' l / kT)  

M ( x , x ' , z , z ' ) = l +  ~ M2~ 
r ~ 2  

m 4 = 

M 6  : 

M8 = 

m l o  = 

m 1 2  = 

--2X2ZZ ' 

_ 4 ( x z z ' )  2 _ 2 ( x x ' ) 2 ( z  ~ + z '~) 

- -6xZ(zz ' )  3 + 4(XX'ZZ') 2 + 6 X 4 ( Z S )  2 

- 4 ( x x ' ) Z ( z  4 + z  '4) - 2 ( x x ' ) Z ( 2 x  2 + x '2) zz '  

- 12(xx')  2 z z ' ( z  2 + z '2) 

- - 4 ( X X ' ) 4 ( Z  2 -~- Z '2  ) - -  8 X 2 ( Z Z ' )  4 - -  6(xx ' )Z ( z  6 + z '6) 

+4x4x '2 z z ' ( z  2 + z '2) - 32 (xx ' z z '  )2(z2 + z '2) 

- 2 0 ( x x ' )  2 z z ' ( z  4 + z '4) + 24x2(x 2 + x '2 ) ( z z ' )  3 

_ 4 8 x 4 ( x ' z z ' )  2 _ 28x '4 (x z z ' )  2 

- 2 2 ( x x ' ) 4 ( z  4 + z '4) _ 8(xx ' )2 ( z  8 + z '8) + 6 0 ( x z z ' )  4 

- ( x x ' ) a ( 6 x  2 + 4x '2) zz '  - lOx2(zz ' )  5 - 20(xZzz ' )  3 

- 8 8 ( x x ' )  4 z z ' ( z  2 + z '2) _ 28(xx ' )  2 z z ' ( z  6 + z '6) 

+Sx4x '2 ( z  4 + z '4) zz '  + 12 (xx ' ) 2 (3x  4 + x '4 ) ( z z ' )  2 

+ 16 (xx ' )4 ( z z ' )  2 + 32x4(x ' z z ' )2 ( z  2 + z '2) 

--48(XX'ZZ')2(Z 4 -k- Z '4)  - -  60(XX')2(ZZ')3(Z 2 -{- Z '2)  

_ 2 7 6 x ~ x , 2 ( z z  ,)3 _ 166x2x '4(zz  ')3 + 72(xx')Z(zz')4 

(8) 
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m 1 4  - l O ( x x ' ) 2 ( z  1~ + z '1~ _ 6 8 ( x x ' ) 4 ( z  6 + z '6) _ 12x2(zz ' )  6 

- 6 ( x x ' ) 6 ( z  2 + z '2) + 120(x z z ' ) 4 ( z z  ' - x 2) 

- 3 6 ( x x ' )  2 z z ' ( z  s + z ' s )  _ 3 3 6 ( x x ' )  4 z z ' ( z  4 + z '4) 

+ 4 ( x x ' ) a ( 4 x  2 + x '2) z z ' ( z  2 + z '2) _ 6 4 ( x x ' z z ' ) 2 ( z  6 + z '6) 

+ 12x4x 'Zzz ' ( z  6 + z '6) _ ( xx ' ) 4 (  196x  2 + 144x '2 ) ( z z ' )  2 

_ 12x6 (x ' z z  ' )2(z2 + z '2) + 5 6 x 4 ( x ' z z ' ) 2 ( z  4 + z '4) 

- 7 6 8 ( x x ' ) 4 ( z z ' ) 2 ( z  2 + z '2) + 2 8 8 ( x x ' ) 4 ( z z ' )  3 

+ 176xZx '6(zz  ')3 _ 6 3 2 x 2 ( x , z z  ,)4 + 1 3 6 ( x x ' ) 2 ( z z ' ) 5  

- 9 6 ( x x ' ) Z ( z z ' ) 4 ( z 2  + z '2) - 7 2 ( x x ' ) 2 ( z z ' ) 3 ( z 4  + z '4) 

+480X6x 'Z(zz ' )  3 -  1056x 'Z(xzz ' )  4 

+124X4X'2(zz ' )3 (z  2 + Z '2) 

m 1 6  - -12 (Xx ' )Z ( z  12 + Z '12) _ 156(XX')4(z  s + z '8) _ 14XZ(ZZ') 7 

--68(XX')6(Z 4 + Z '4) --  (XX')6(8X 2 A7 6 x  '2) zz '  + 2 1 0 x 4 ( z z ' )  6 

--420X6(ZZ') 5 + 70(X2ZZ') 4 --  44(XX')  2 ZZ'(Z 1~ + Z '1~ 

- - 8 6 4 ( x x ' )  4 zz t (z  6 --~ z t6) -- 292(XX')  6 z z ' ( z  z + z '2) 

+ 1 6 ( x x ' ) Z ( x  z -- 5zz ' )  z z ' ( z  s + z 's) + 4 4 ( x x ' ) 6 ( z z ' )  2 

+ ( x x ' ) 4 ( 6 0 x  2 + 8 x  '2) zg ' ( z  4 + 2 '4) + 12X2X'6Zz'(z 6 + Z '6) 

+ 5 4 ( x x ' ) 4 ( 2 x  4 + x ' 4 ) ( z z ' )  2 + 8 0 x 4 ( x ' z z ' ) 2 ( z  6 + z '6) 

- 2 3 0 0 ( x x ' ) 4 ( z z ' ) 2 ( z  4 + z '4) _ 24xO(x ' zz ' )Z(z  4 + z '4 ) 

+ ( x x ' ) 4 ( 3 3 6 x  2 + 80xtZ)(zzt)Z(z  2 ...]- z t2) .-~ 5 4 4 ( x x t z z ' )  4 

+ ( x x ' ) 2 ( 3 1 0 4 x  4 + 1272x '4 ) ( z z ' )  4 + 152x '6 (x z z ' )2 ( z  4 + z '4) 

- - x Z ( 6 4 x  '8 + 2060xZx  '6 + 2 6 9 4 x 4 x  '4 + 240x6x 'Z ) ( z z ' )  3 

- - ( x x ' ) Z ( 1 8 3 4 x  '2 + 3100xZ) ( z z ' )  5 + 3 0 0 ( x x ' ) 2 ( z z ' )  6 

- - 1 4 0 ( x x ' ) 2 ( z z ' ) 5 ( z  2 + z '2) _ 1 2 8 ( x x ' ) 2 ( z z ' ) 4 ( z  4 + Z t4) 

--336x'Z(xzz')4(7- 2 + Z '2) + 200X4X'2(ZZ')3(Z 4 + Z '4) 

+(732X2X '6 - -  3968X4X '4 - -  120X6x'Z)(zz ' )3(z  2 + z '2) 

-108(xx ' )~ ( z z ' )3 ( z  6 + z '6) 
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We now propose  a formula for M: 

M(x ,  x', z, z') = m o F ( x ,  x', z, z') 

where M o is defined by (5) and 

F 4 = N(x ,  x', z, z ' ) /N(x ' ,  x, z, z') 

with 

N(x,  x', z, z ' ) =  [(1 -x2x 'Z ) (1  -zzt)] 4 

§ - x 2 x ' 2 )  3 zS(1 - zz')2 

+(1 - x2x'2)[4(1 - x 2) xx ' z z ' ]  2 

- 2 1 4 ( 1  - x2)( 1 - x '2) xx ' z z ' ]  2 

It can be shown that  

c; = [c~+ + (~2+ _ d)1/2] [fl + _ (f12+ _ d)i/23/d, 

= [~X_ -- (~2 _ d)1/2] [fl_ + (f12 _ d)1/23/d, 

j = l ,  2 

j = 3 , 4  

497 

(9) 

(lO) 

where the upper (lower) signs correspond to j =  1 or 3 (2 or 4), and 

~+ = - ( A •  ~++ = B + D  

It follows from expression (10) that 

0 ~ < c j < l  j > l  

0~<c~<1  if A + B + C + D > O  ( T c > T )  

c ~ > l  if A + B + C + D < O  ( T c < T )  

l-I (l  - -C~)= 16CLC2C3C4 
J 

x d  2 ( A + B + C + D ) ( B + C - - A - D )  

• ( B + D - - A - -  C ) ( C + D - - A - B )  

After a s traightforward calculation, we get 

M g  = U ( 1  - z z ' ) 4 / D [  (1 - z 2 ) ( 1  - z'2)] 2 

(11) 

(12) 
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where 
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N =  [(1 - x2x'2)(1 - z2)(1 - z '2)]  2 - [ 4 x x ' ( z  + z')(1 + zz ' ) ]  2 

D = (1 - x2x'2)(1 - zz ' )  4 

+ 8zz'(  1 - zz')2[-(1 + x2x '2 ) (x  2 + x '2) - 4x2x '2 ] 

+ [ 4 z z ' ( x  2 - x '2) ]  2 

Our  conjecture (9) agrees with the exact series expansion (8) up to the 16th 
order. Notice that  

M ( x ,  x ' ,  z, z ' )  = M ( x ,  x ' ,  z', z)  (13) 

which is an exact consequence of the up-down reflection symmetry.  

4. EXACTLY SOLUBLE CASES 

Case  1. J1 = J'~. In this case we have x = x'. I t  follows from (13) that 

(0" . . . .  ) = ( a o a a )  = m ( x ,  x ' ,  z, z ' )  (14) 

Since F =  1 and M =  M0, our  conjecture agrees with the exact result of 
Au-Yang and McCoy.  

Case  2. J1 = 0 or  J'l = 0, When  J'~ = 0, we have x ' =  1 and 

F 4 =  1 + 4zz ' / (1  - z z ' )  2 (15) 

In  this case the layered lattice reduces to a decorated square lattice and can 
be solved exactly. (11) Our  formula  (15) agrees with the exact result. 

Case  3. J1 or J]  = oe. When  J'l = oe (i.e., x '  = 0) we have 

g(x ,  0, z, z ' ) =  [1 + 4x2zz ' / (1  -- zz ' )2]  -1/4 

and 

( ~r oaa ) = 1 

( a  . . . .  ) = [ 1 + 4x2zz ' / (1  - zz ')2 ] - i/2 

In this case, our  model  reduces to a 
magnet izat ion can be derived exactly for arbi t rary magnetic  field H, (12~ 

(~rodd) = 1 
(17) 

(~r . . . .  ) = s i n h  K( s inh  2 K + x  2) 1/2 

(16) 

one-dimensional  system and the 
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where K - ( H + J 2 + J ' 2 ) / k T .  The exact expression (17) reduces to (16) at 
H = 0 .  

C a s e  4. J2 o r  J ~  = oo. When  J~ = ov (i.e., z '  = 0), we have F =  1 and 

( a  . . . .  ) = ( a o d ~ ) = ( 1 - - k  2) 1/8 (18) 

where k = 4 x x ' z / ( 1 -  x 2 x ' 2 ) ( 1 -  z2), In this case the layered lattice reduces 
to a rectangular  lattice and (18) is exact. 

In addit ion to above soluble cases, it is possible to sum up exactly all 
terms in the series expansion to fourth in z and z', but  to all orders in x 
and x'. Ou r  conjecture agrees with such exact results. 

4. C O N C L U S I O N  

We have proposed a formula for the spontaneous  magnet izat ion of  the 
Ising model  on a layered square lattice with four different coupling 
constants  and two different magnetic  moments .  This model  includes the 
layered Ising model  of  Au-Yang ai~d M c C o y  as a special case. Our  conjec- 
ture is supported by the following evidence: (1) The spontaneous  
magnet izat ion drops to zero at the exact critical temperature.  (2) Our  
expression agrees with the exact low-temperature  series expansion up to the 
16th order. (3) Our  result is exact in several special cases. 
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